Penurunan rumus momen inersia berbagai benda (lengkap dengan penjelasannya)
Daftar Isi
Persamaan di atas, merupakan persamaan dasar untuk semua jenis benda dengan massa yang terdistribusi kontinu, selain itu juga diperlukan konsep-konsep pendukung agar persamaan tersebut dapat menghasilkan rumus momen inersia untuk berbagai benda. Beberapa konsep yang menurut saya perlu dipahami antara lain
Konsep rapat massa ini digunakan untuk mensubstitusi nilai “dm” pada persamaan umum di atas, perhatikan juga jenis bendanya (1 dimensi, 2 dimensi, atau 3 dimenssi).
Iz = ∫ r2 dm
Iz = ∫ (x2 + y2) dm
Iz = ∫ x2 dm + ∫ y2 dm
Batang yang bermassa m dan memiliki panjang L dengan pusat massa berada di titik O (berada di sumbu y), tampak seperti gambar di atas. Tentukan terlebih dahulu elemen massanya (kotak warna kuning) yang memiliki ukuran dx dan berjarak x dari pusat massanya.
dm = λ dx
r = x
dengan batas integrasi
x : - ½ L sampai ½ L
sehingga
I = Ipm + md2
I = 1/12 mL2 + m( ½L)2
I = 1/12 mL2 + ¼ mL2
I = 1/12 mL2 + 3/12 mL2
I = 4/12 mL2
I = 1/3 mL2 (terbukti)
Plat tipis yang bermassa m dan memiliki panjang dan lebar berturut-turut adalah b dan a. Jika pelat tersebut diputar dengan poros sejajar salah satu sisi (b) melewati titik pusat massanya (p), maka untuk menentukan momen inersianya pertama-tama kita tentukan terlebih dahulu elemen massa dm yang memiliki panjang b dan lebar dy terletak sejauh y dari poros yang tampak seperti gambar di atas. Sehingga dapat kita tulis dm = λ dy
r = y
dengan batas integrasi
y : - ½ a sampai ½ a
sehingga
Dengan cara yang sama kita dapat menentukan momen inersia ketika porosnya sejajar dengan sisi a dan melewati titik pusat massanya yakni sebesar
Berdasarkan gambar di atas, maka dapat kita ketahui bahwa momen inersia pada sumbu y sama dengan momen inersia pada pers (1) dan momen inersia pada sumbu x sama dengan momen inersia pada pers (2) sehingga dapat kita tuliskan
Iz = Ix + Iy
Iz = 1/12 mb2 + 1/12 ma2
Iz = 1/12 m (a2 + b2) (terbukti)
I = Ipm + md2
I = 1/12 ma2 + m( ½a)2
I = 1/12 ma2 + ¼ ma2
I = 1/12 ma2 + 3/12 ma2
I = 4/12 ma2
I = 1/3 ma2 (terbukti)
dm = ρ r dr dθ dz (sistem koordinat silinder)
dengan batas integrasi
r : R1 sampai R2
θ : 0 sampai 2π
z : 0 sampai L
Sehingga
dm = ρ dV
dm = ρ r2 sin θ dr dθ dϕ (koordinat bola)
r = r sin θ
dengan batas integrasi
r : 0 sampai R
θ : 0 sampai π
ϕ : 0 sampai 2π
Sehingga
I = Ipm + md2
I = 2/5 mR2 + m(R)2
I = 2/5 mR2 + mR2
I = 7/5 mR2 (terbukti)
dm = σ r2 sin θ dθ dϕ dA
r = r sin θ
dengan batas integrasi
θ : 0 sampai π
ϕ : 0 sampai 2π
sehingga
Elemen massa diambil lebar dy dan berjarak y dari sumbu poros. Karena nilai p berubah untuk setiap perubahan y maka, nilai p dapat ditentukan dengan persamaan
dm = σ dA (dA = p dy)
dm = σ p dy
r = y
dengan batas integrasi
y : 0 sampai h
sehingga
Untuk menentukan momen inersia kerucut di atas, pertama-tama perlu diketahui bahwa kerucut tersebut terbentuk dengan menarik luasan alas (lingkaran) dari z = 0 sampai z = h. Setiap perubahan h jari-jarinya juga berubah dari r = 0 sampai r = h, sehingga dapat dikatakan batas untuk jari-jari tersebut adalah dari r = 0 sampai r = z. Selain itu, kita harus menggunakan sistem koordinat silinder untuk menentukan elemen massanya yang dapat dituliskan dm = ρ r dr dθ dz
r = r
dengan batas integrasi
r : 0 sampai z
θ : 0 sampai 2π
z : 0 sampai h
sehingga
Demikian penurunan rumus momen inersia untuk berbagai benda, semoga dapat menambah pengetahuan para pembaca dan tidak membingungkan. Jika ada kritik dan saran bisa tinggalkan komentarnya di bawah.
- Konsep rapat massa
- Sistem koordinat silinder dan sistem koordinat bola
- Teorema sumbu sejajar
- Teorema sumbu tegak lurus
- Penurunan rumus momen inersia berbagai benda
- Ekstra TIme
Gambar 1. Momen inersia berbagai benda
Saat mempelajari materi dinamika rotasi, tentu kalian pernah melihat gambar di atas ,Tapi pernahkah kalian berpikir asal dari persamaan-persamaan di atas? Berdasarkan hasil literasi dari berbagai sumber yang ada , Pada kesempatan kali ini saya akan mencoba melakukan penurunan rumus momen inersia untuk berbagai benda di atas sehingga ditemukan rumus-rumus dan angka di atas.
Penurunan rumus momen inersia untuk berbagai benda di atas, pada dasarnya menggunakan persamaan umum momen inersia yang sudah pernah saya bahas di metari dinamika rotasi untuk kelas 11 yakni
Persamaan di atas, merupakan persamaan dasar untuk semua jenis benda dengan massa yang terdistribusi kontinu, selain itu juga diperlukan konsep-konsep pendukung agar persamaan tersebut dapat menghasilkan rumus momen inersia untuk berbagai benda. Beberapa konsep yang menurut saya perlu dipahami antara lain
Konsep rapat massa
Konsep rapat massa yang saya maksudkan disini adalah kerapatan massa terhadap suatu besaran lain yakni rapat massa terhadap panjang (biasa disebut dengan satuan massa persatuan panjang). Ada tiga rapat massa yang perlu dipahami disini seperti yang ditunjukkan tabel berikut.Konsep rapat massa ini digunakan untuk mensubstitusi nilai “dm” pada persamaan umum di atas, perhatikan juga jenis bendanya (1 dimensi, 2 dimensi, atau 3 dimenssi).
Sistem koordinat silinder dan sistem koordinat bola
Koordinat silinder dan koordinat bola sangat penting untuk dipahami, karna sebagian besar benda yang akan diturunkan rumus momen inersianya adalah benda-benda dengan bentuk silinder dan bola seperti: silinder pejal, silinder berongga, bola pejal, bola berongga dll. benda-benda tersebut akan lebih mudah dianalisis menggunakan sistem koordinat silinder dan sistem koordinat bola. Berikut gambar dan transformasi kedua sistem tersebutSistem koordinat silinder
Gambar 2. Koordinat silinder
Sistem koordinat bola
Gambar 3. Koordinat bola
Teorema sumbu sejajar
Teorema sumbu sejajar dapat digunakan untuk menentukan momen inersia suatu benda ketika sumbu porosnya tidak terletak pada pusat massa tetapi sejajar dengan sumbu poros melalui pusat massanya, teorema untuk sudah saya bahas di materi dinamika rotasi. Secara matematis dapat ditulisTeorema sumbu tegak lurus
Teorema sumbu tegak lurus artinya sumbu poros yang tegak lurus sumbu melalui pusat massa yang tegak lurus penampang. Teorema ini memungkinkan menentukan momen inersia ketika sumbu porosnya tegak lurus penampang (sumbu z)dengan memanfaatkan momen inersia untuk poros tegak lurus lainnya (terhadap sumbu x dan sumbu y). Perhatikan gambar berikutGambar 4. Teorema sumbu tegak lurus
Iz = ∫ r2 dm
Iz = ∫ (x2 + y2) dm
Iz = ∫ x2 dm + ∫ y2 dm
Penurunan rumus momen inersia berbagai benda
Berikut penurunan rumus momen inersia berbagai bendaBatang silinder pejal
Poros melalui titik pusat massanya
Perhatikan gambar berikut, untuk mempermudah menurunkan rumusnyaBatang yang bermassa m dan memiliki panjang L dengan pusat massa berada di titik O (berada di sumbu y), tampak seperti gambar di atas. Tentukan terlebih dahulu elemen massanya (kotak warna kuning) yang memiliki ukuran dx dan berjarak x dari pusat massanya.
dm = λ dx
r = x
dengan batas integrasi
x : - ½ L sampai ½ L
sehingga
Poros melalui salah satu ujung
Perhatikan kembali gambar di atas, jika sumbu poros di geser ke tepi (sumbu y’) maka kita dapat menggunakan teorema sumbu sejajar untuk menemukan momen inersianya, dimana sumbu poros bergeser sejauh ½ LI = Ipm + md2
I = 1/12 mL2 + m( ½L)2
I = 1/12 mL2 + ¼ mL2
I = 1/12 mL2 + 3/12 mL2
I = 4/12 mL2
I = 1/3 mL2 (terbukti)
Pelat tipis
Poros sepanjang tepi (salah satu sisinya)
Perhatikan gambar berikutPlat tipis yang bermassa m dan memiliki panjang dan lebar berturut-turut adalah b dan a. Jika pelat tersebut diputar dengan poros sejajar salah satu sisi (b) melewati titik pusat massanya (p), maka untuk menentukan momen inersianya pertama-tama kita tentukan terlebih dahulu elemen massa dm yang memiliki panjang b dan lebar dy terletak sejauh y dari poros yang tampak seperti gambar di atas. Sehingga dapat kita tulis dm = λ dy
r = y
dengan batas integrasi
y : - ½ a sampai ½ a
sehingga
Dengan cara yang sama kita dapat menentukan momen inersia ketika porosnya sejajar dengan sisi a dan melewati titik pusat massanya yakni sebesar
Poros di pusat massanya dan tegak lurus bidang
Momen inersia pelat dengan sumbu poros di pusat massanya dan tegak lurus lurus bidang dapat ditentukan dengan menggunakan teorema sumbu tegak lurusBerdasarkan gambar di atas, maka dapat kita ketahui bahwa momen inersia pada sumbu y sama dengan momen inersia pada pers (1) dan momen inersia pada sumbu x sama dengan momen inersia pada pers (2) sehingga dapat kita tuliskan
Iz = Ix + Iy
Iz = 1/12 mb2 + 1/12 ma2
Iz = 1/12 m (a2 + b2) (terbukti)
Poros sepanjang tepi (salah satu sisinya)
Momen inersia pelat sepanjang tepi salah satu sisinya dapat ditentukan dengan menggunakan teorema sumbu sejajar, dimana poros sejajar dan bergeser sejauh ½ a dari poros dipusat massanya (pers. 2), maka dapat kita tuliskanI = Ipm + md2
I = 1/12 ma2 + m( ½a)2
I = 1/12 ma2 + ¼ ma2
I = 1/12 ma2 + 3/12 ma2
I = 4/12 ma2
I = 1/3 ma2 (terbukti)
Silinder
Silinder berongga
Sebuah silinder yang bermassa m dan panjang L memiliki lubang di tengah-tengahnya dengan jari-jari seperti tampak pada gambar a. jika silinder tersebut berotasi dengan sumbu poros melalui pusat massanya, maka momen inersianya dapat ditentukan sebagai berikut dm = ρ dVdm = ρ r dr dθ dz (sistem koordinat silinder)
dengan batas integrasi
r : R1 sampai R2
θ : 0 sampai 2π
z : 0 sampai L
Sehingga
Silinder pejal
Momen inersia silinder pejal dapat ditentukan ketika nilai R1 pada persamaan (3) sama dengan nol dan R2 sama dengan R (jari-jari silinder), sehingga dapat ditulisSilinder tipis berongga
Momen inersia silinder tipis berongga dapat ditentukan ketika nilai R1 = R2 = R, silinder hanya memiliki kulit tipis. Maka persamaan (3) dapat ditulis.Bola
Bola pejal dengan poros melalui pusat massa
Momen inersia bola pejal dengan poros melalui pusat massa, dapat ditentukan dengan menggunakan sistem koordinat bola sehingga elemen massanya dapat ditulis sebagai berikutdm = ρ dV
dm = ρ r2 sin θ dr dθ dϕ (koordinat bola)
r = r sin θ
dengan batas integrasi
r : 0 sampai R
θ : 0 sampai π
ϕ : 0 sampai 2π
Sehingga
Bola pejal dengan poros di tepi
Momen inersia bola pejal dengan poros di tepi dapat ditentukan dengan teorema sumbu sejajar dengan poros bergeser sejauh R dari poros pusat massanya, sehinggaI = Ipm + md2
I = 2/5 mR2 + m(R)2
I = 2/5 mR2 + mR2
I = 7/5 mR2 (terbukti)
Bola tipis berongga
Momen inersia bola tipis berongga yang dimaksudkan disini adalah sebuah bola yang terlapisi oleh sebuah kulit tipis (seperti bola pingpong), maka dalam menentukan nilai elemen massa (dm) tidak menggunakan volume akan tetapi luas permukaan bola.dm = σ r2 sin θ dθ dϕ dA
r = r sin θ
dengan batas integrasi
θ : 0 sampai π
ϕ : 0 sampai 2π
sehingga
Ekstra TIme
Segitiga
Sebuah segitiga sama sisi yang memiliki panjang sisi sebesar a diputar dengan poros berada pada satu sisi, tampak seperti gambar berikutElemen massa diambil lebar dy dan berjarak y dari sumbu poros. Karena nilai p berubah untuk setiap perubahan y maka, nilai p dapat ditentukan dengan persamaan
dm = σ dA (dA = p dy)
dm = σ p dy
r = y
dengan batas integrasi
y : 0 sampai h
sehingga
Kerucut
Tentukan momen inersia sebuah kerucut yang memiliki tinggi h sama dengan jari-jari alasnya r (h=r) yang diputar dengan sumbu poros z tampak seperti gambar berikutUntuk menentukan momen inersia kerucut di atas, pertama-tama perlu diketahui bahwa kerucut tersebut terbentuk dengan menarik luasan alas (lingkaran) dari z = 0 sampai z = h. Setiap perubahan h jari-jarinya juga berubah dari r = 0 sampai r = h, sehingga dapat dikatakan batas untuk jari-jari tersebut adalah dari r = 0 sampai r = z. Selain itu, kita harus menggunakan sistem koordinat silinder untuk menentukan elemen massanya yang dapat dituliskan dm = ρ r dr dθ dz
r = r
dengan batas integrasi
r : 0 sampai z
θ : 0 sampai 2π
z : 0 sampai h
sehingga
Demikian penurunan rumus momen inersia untuk berbagai benda, semoga dapat menambah pengetahuan para pembaca dan tidak membingungkan. Jika ada kritik dan saran bisa tinggalkan komentarnya di bawah.
Comments
Post a Comment